Roll No. \square Total No. of Pages : 03
Total No. of Questions: 09

B.Tech. (Sem.-1 ${ }^{\text {st }}$)
 ENGINEERING MATHEMATICS-I
 Subject Code : BTAM-101 (2011 \& 2012 Batch)
 Paper ID : [A1101]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. a) Find asymptotes, parallel to axes, of the curve :

$$
x^{2} y^{2}-x y^{2}-x^{2} y+x+y+1=0 .
$$

b) Write a formula to find the volume of the solid generated by the revolution, about y-axis, of the area bounded by the curve $x=f(y)$, the y-axis and the abscissae $y=a$ and $y=b$.
c) What is the value of $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}$?
d) If an error of 1% is made in measuring the length and breadth of a rectangle, what is the percentage error in its area?
e) Find the equation of the tangent plane to the surface

$$
z^{2}=4\left(1+x^{2}+y^{2}\right) \text { at }(2,2,6) .
$$

f) What is the value of $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$
g) Give geometrical interpretation of $\int_{0}^{1} \int_{0}^{1-x} d x d y$.
h) Show that the vector field $\overrightarrow{\mathrm{F}}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ is irrotational.
i) What is the value of $\nabla \times(x y \hat{i}+y z \hat{j}+z x \hat{k})$?
j) State Stoke's theorem.

SECTION-B

2. Trace the following curves by giving their salient feature:
a) $x^{3}+y^{3}=3$ axy .
b) $r=a(1+\cos \theta)$
3. a) Find the perimeter of the cardioid $r=a(1-\cos \theta)$.
b) Find the area bounded by two parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
4. a) If $u=\frac{y}{z}+\frac{z}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
b) State Euler's theorem for homogeneous functions and apply it to show that
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 \tan u$
where $\sin u=\frac{x^{2} y^{2}}{x+y}$
5. a) Find points on the surface $z^{2}=x y+1$ nearest to the origin.
b) Find percentage error in the area of an ellipse if one percent error is made in measuring its major and minor axes.

SECTION-C

6. a) Evaluate the following integral by changing the order of integration :

$$
\int_{0}^{3} \int_{1}^{\sqrt{4-x}}(x+y) d x d y
$$

b) Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
7. a) Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point (1, 2, -1).
b) If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, show that \vec{F}. curl $\vec{F}=0$.
8. a) Compute the line integral $\int_{\mathrm{C}}\left(y^{2} d x-x^{2} d y\right)$, where C is the boundary of the triangle whose vertices are $(1,0),(0,1)$ and $(-1,0)$.
 of the plane $2 x+3 y+6 z=12$ in the first octant.
9. State Gauss Divergence theorem and verify it for

$$
\begin{align*}
& \vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k} \text { taken over the rectangular } \\
& \text { parallelopiped } 0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c \tag{8}
\end{align*}
$$

